

Dynamical processes and transport influencing the water vapor budget in the UTLS

Martin Riese, Mengchu Tao, Felix Plöger, Paul Konopka, and Rolf Müller

Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany

July 23, 2015 | TTL Workshop, Boulder Colorado

Content

- Horizontal transport of water vapor from the TTL into the LMS
- Influence of major warmings on vertical water vapor transport into the deep stratosphere

adapted from Gettelman et al., 2011 (Fig. 2a)

JÜLICH

Horizontal transport into the extratropical LMS

H₂O at 420 K (18 km) from July until Dec'03

CLaMS driven by ERA-Interim

- Upward transport during summer in the region of the AM
- Important for propagation of moisture towards higher latitudes.

Seasonal cycle of H₂O transport into the LMS (390 K)

- Maximum H₂O values in the subtropics during Monsoon season
- Propagation of moist air into the extra-tropical LMS in summer/fall

Plöger et al., JGR, 2013

Subtropical control in moistening the LMS (390 K)

Artificial transport barrier experiments

Summer/fall maximum in LMS caused by transport from subtropics

Plöger et al., 2013

glied in der Helmholtz-Gemeinsch

Role of intrusions (tongues)

Importance of large scale eddy transport

H₂O tendencies in LMS

Conclusions Part-1

- Convective uplift of moist air by the Asian monsoon, in combination with quasi-horizontal transport from the sub-tropics, leads to a summer/fall maximum of H₂O in the extra-tropical LS
- Poleward of about 40-50⁰ N this transport is dominated by wave-driven eddy mixing.
- Close to the subtropics, the water vapour increase during summer/fall is related to horizontal advection in the shallow branch of the BD circulation (not shown in my talk, see Plöger et al., 2013).

Content

- Horizontal transport of water vapor from the TTL into the LMS
- Influence of major warmings on vertical water vapor transport into the deep stratosphere

adapted from Gettelman et al., 2011 (Fig. 2a)

35y CLaMS simulation of H₂O variability in tropics (400 K)

Tao et al., GRL, 2015

Tape recorder in MLS and CLaMS

Tropical water vapor climatology (10°S to 10°N; 2005 to 2013) during boreal winter (DJF)

Faster upward propagation in CLaMS (ERA-Interim)

JÜLICHFORSCHUNGSZENTRUM

Difference between eQBO and wQBO in CLaMS

- Stronger upwelling in eQBO than in wQBO winters
- Lower temperature & H₂O around tropical tropopause in eQBO than in wQBO winters
- Consistent with QBO-induced H₂O variation of about 0.5 ppmv (Randel et al., 2004)

Additional water vapor drop after MWs (eQBO)

- Additional upward propagating branch for winters with MWs
- Signal is also present during wQBO, but much less pronounced

27. Juli 2015

MW induced additional dehydration during eQBO and wQBO

Influence of additional dehydration on decadal water vapor variability?

Difference between 1990s and 2000s

- 1 winter with MWs in 90s; 9 winters with MWs in 00s
- Signature of MWs can be clearly seen; contribution to lower
 H₂O values

Conclusions Part-2

- MW-related enhanced upwelling results in a clear drying at the tropical tropopause by \sim 0.3 ppmv around 3 weeks after the MW in the eQBO phase.
- In the wQBO phase this drying signature is also present but considerably less pronounced (see Tao et al., 2015)
- MW-associated dehydration introduces a significant difference between the lower stratospheric water vapor in boreal late winter and spring of 2000s and 1990s.